Лабораторные работы по электротехнике Исследование линейной электрической цепи постоянного тока Метод контурных токов Мощность трехфазной системы Типовой расчет нелинейной цепи Режимы работы электрических цепей


Работа трансформатора под нагрузкой

       Если к первичной обмотке трансформатора подключить напряжение U1, а вторичную обмотку соединить с нагрузкой, в обмотках появятся токи I1 и I2. Эти токи создадут магнитные потоки Ф1 и Ф2, направленные навстречу друг другу. Суммарный магнитный поток в магнитопроводе уменьшается. Вследствие этого индуктированные суммарным потоком ЭДС E1 и E2 уменьшаются. Действующее значение напряжения U1 остается неизменным. Уменьшение E1, согласно (10.1), вызывает увеличение тока I1. При увеличении тока I1 поток Ф1 увеличивается ровно настолько, чтобы скомпенсировать размагничивающее действие потока Ф2. Вновь восстанавливается равновесие при практически прежнем значении суммарного потока.
       В нагруженном трансформаторе, кроме основного магнитного потока, имеются потоки рассеяния Ф1S и Ф2S, замыкающиеся частично по воздуху. Эти потоки индуктируют в первичной и вторичной обмотках ЭДС рассеяния.

,     ,

       где   X2S - индуктивное сопротивление рассеяния вторичной обмотки.
       Для первичной обмотки можно записать уравнение

.     (10.2)

       Для вторичной обмотки

,     (10.3)

       где  R2 - активное сопротивление вторичной обмотки; Расчёт трёхфазных электрических цепей Расчётно-графическое задание предназначено для закрепления теоретического материала по теме «многофазные электрические цепи». Целью задания является отработка техники расчёта симметричных и несимметричных, гармонических, установившихся режимов в трёхфазных электрических цепях. Задание так же содержит расчёт активных и реактивных мощностей трёхфазных приёмников электрической энергии.
              ZН - сопротивление нагрузки.
       Основной магнитный поток трансформатора есть результат совместного действия магнитодвижущих сил первичной и вторичной обмоток.

.

   Трансформаторная ЭДС E1, пропорциональная основному магнитному потоку, приблизительно равна напряжению на первичной катушке U1. Действующее значение напряжения постоянно. Поэтому основной магнитный поток трансформатора остается неизменным при изменении сопротивления нагрузки от нуля до бесконечности.
       Если  , то и сумма магнитодвижущих сил трансформатора

.   (10.4)

     Уравнение (10.4) называется уравнением равновесия магнитодвижущих сил.
       Уравнения (10.2), (10.3), (10.4) называются основными уравнениями трансформатора.


     На рисунке 10.6 изображена упрощенная схема замещения трансформатора под нагрузкой.

 


Рис. 10.5

        активное сопротивление короткого замыкания трансформатора,
 

       индуктивное сопротивление короткого замыкания.
 

       Параметры упрощенной схемы замещения определяются из опыта короткого замыкания. Для этого собирается схема рис. 10.6.


Рис. 10.6

       Зажимы вторичной обмотки замыкаются накоротко. Измеряют напряжение, ток и мощность: U1k, I1k, Pk. Опыт короткого замыкания осуществляется при пониженном напряжении на первичной обмотке.
       Затем вычисляют

.

       где  ZK - полное сопротивление короткого замыкания.        

Упрощенная схема используется для расчета цепей, содержащих трансформаторы.

Электрические машины постоянного тока

Устройство электрической машины постоянного тока

   Электрическая  машина  постоянного  тока состоит из двух основных частей: неподвижной части ( индуктора) и вращающейся части ( якоря с барабанной обмоткой).
     На рис. 11.1 изображена конструктивная схема машины постоянного тока       Индуктор состоит из станины 1 цилиндрической формы, изготовленной из ферромагнитного материала, и полюсов с обмоткой возбуждения 2, закрепленных на станине. Обмотка возбуждения создает основной магнитный поток.
      Магнитный поток может создаваться постоянными магнитами, укрепленными на станине.
      Якорь состоит из следующих элементов: сердечника 3, обмотки 4, уложенной в пазы сердечника, коллектора 5.


          Рис. 11.1

Сердечник якоря для уменьшения потерь на вихревые точки набирается из изолированных друг от друга листов электротехнической стали.

11.2. Принцип действия машины постоянного тока

      Рассмотрим работу машины постоянного тока на модели рис.11.2,

     где 1 - полюсы индуктора, 2 - якорь, 3 - проводники, 4 - контактные щетки.
     Проводники якорной обмотки расположены на поверхности якоря. Очистим внешние поверхности проводников от изоляции и наложим на проводники неподвижные контактные щетки.
     Контактные щетки размещены на линии геометрической нейтрали, проведенной посредине между полюсами.
     Приведем якорь машины во вращение в направлении, указанном стрелкой.

 
Рис. 11.2


     Определим направление ЭДС, индуктированных в проводниках якорной обмотки по правилу правой руки.

     На рис.11.2 крестиком обозначены ЭДС, направленные от нас, точками - ЭДС, направленные к нам. Соединим проводники между собой так, чтобы ЭДС в них складывались. Для этого соединяют последовательно конец проводника, расположенного в зоне одного полюса с концом проводника, расположенного в зоне полюса противоположной полярности (рис. 11.3)

     Два проводника, соединенные последовательно, образуют один виток или одну катушку. ЭДС проводников, расположенных в зоне одного полюса, различны по величине. Наибольшая ЭДС индуктируется в проводнике, расположенном под срединой полюса, ЭДС, равная нулю, - в проводнике, расположенном на линии геометрической нейтрали.


           
Рис.1.3

           Если соединить все проводники обмотки по определенному правилу последовательно, то результирующая ЭДС якорной обмотки равна нулю, ток в обмотке отсутствует. Контактные щетки делят якорную обмотку на две параллельные ветви.       В верхней параллельной ветви индуктируется ЭДС одного направления, в нижней параллельной ветви - противоположного направления. ЭДС, снимаемая контактными щетками, равна сумме электродвижущих сил проводников, расположенных между щетками.
      На рис. 11.4 представлена схема замещения якорной обмотки.      В параллельных ветвях действуют одинаковые ЭДС, направленные встречно друг другу. При подключении к якорной обмотке сопротивления в параллельных ветвях возникают одинаковые токи , через сопротивление RH протекает ток IЯ.


Рис. 11.4

ЭДС якорной обмотки пропорциональна частоте вращения якоря n2 и магнитному потоку индуктора Ф

                              (11.1)

      где Се - константа.
      В реальных электрических машинах постоянного тока используется специальное контактное устройство - коллектор. Коллектор устанавливается на одном валу с сердечником якоря и состоит из отдельных изолированных друг от друга и от вала якоря медных пластин. Каждая из пластин соединена с одним или несколькими проводниками якорной обмотки. На коллектор накладываются неподвижные контактные щетки. С помощью контактных щеток вращающаяся якорная обмотка соединяется с сетью постоянного тока или с нагрузкой.

Соединение в треугольник. Схема, определение   Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.

Свойства ферромагнитных материалов  Поместим ферромагнитный материал внутри катушки с током. Сначала, с увеличением напряженности намагничивающего поля, магнитная индукция быстро возрастает. Затем, из-за насыщения материала, при дальнейшем увеличении напряженности магнитного поля магнитная индукция почти не меняется.

Работа электрической машины постоянного тока в режиме генератора  Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток


Магнито-полупроводниковые логические элементы