Методика расчёта линейных электрических цепей переменного тока Метод активных и реактивных составляющих токов Метод узловых и контурных уравнений Расчёт трёхфазной цепи при соединении приемника в звезду


Методика расчета электрических цепей

Расчет методом эквивалентного генератора

В соответствии с заданием рассчитаем ток в пятой ветви. Крайние точки в пятой ветви обозначим буквами «а» и «b». Удаляем из электрической цепи пятую ветвь вместе с источником тока, подсоединенного параллельно ей.

Составляем расчетные схемы (рис. 10, 11).

Схема (рис. 10) содержит два узла (1, 3) и три ветви, подсоединенные к этим уздам: первая- ветвь 1, вторая - последовательно соединенные ветви 2 и 4, третья состоит из 3-й и 6-й ветвей.

Рис.10. Схема цепи после удаления Рис.11. Схема с эквивалентным В режиме нагрузки первичная обмотка трансформатора включена на номинальное первичное напряжение, а ко вторичной обмотке подключен приемник. В этом случае можно выделить три потока: основной поток Ф , сцепленный с первичной и обмотками, рассеяния обмотки Фроc1 Фрoс2 .

источника тока J и 5 – й ветви генератором и удаленной частью цепи

 

Рис.12. Граф заданной электрической цепи с выделенными независимыми контурами

хсз

XL6

ХС6

Рис.13. Схема электрической цепи, подготовленная для расчета методом контурных токов

Определим ЭДС эквивалентного генератора - Uabxx :

 - напряжение между узлами 1,3 определяем по методу двух узлов

-токи в ветвях 2-4 и 3-6

- запишем уравнение обхода контура "a-b, 6, 4": Uabxx + UZ6 – UZ4= 0;

- отсюда напряжение Uabxx


Находим внутреннее сопротивление эквивалентного генератора Zвн:

- преобразуем треугольник из сопротивлений ветвей: 1,2,4 в звезду сопротивлений Za, Zb, Zc :

-подключаем комплексированную цепь к зажимам выделенной ветви:

  Ток в пятой ветви находим, используя метод наложения (см. рис.11):

 Значение тока в пятой ветви, ранее рассчитанное по методу узловых потенциалов
Следовательно, решение правильное.

Поэтому мы можем сформулировать для отдельных участков цепи два очень полезных правила, которые получили известное название законов Кирхгофа, а именно
1 правило - алгебраическая сумма токов, втекающих в данный узел, равна 0.
2 правило - сумма напряжений и э.д.с по обходу контура равна 0.
Эти правила вместе с законом Ома позволяют записать в математической форме уравнения энергетического и зарядового баланса замкнутой электрической системы.
А дальше просто нужно разрешить эти уравнения относительно токов в ветвях и узловых потенциалов (напряжений между узлами) , которые будут в этих уравнениях неизвестными.
Для полного описания системы нам необходимо составить (n-1) уравнение по 1 правилу Кирхгофа для (n-1) узла, а также m уравнений по 2 правилу Кирхгофа для m независимых контуров.
Одно уравнение по 1 правилу пропадает, так как потенциал одного узла мы принимаем равным 0 (заземляем), чтобы относительно него отсчитывать другие потенциалы.
Независимым контуром называется контур, в котором хотя бы одна ветвь не принадлежит другим контурам. Уравнения для зависимых контуров просто переопределят систему.
Таким образом, мы получаем систему интегральных уравнений с нелинейными коэффициентами (m + n 1) порядка, где m и n стремятся к .

Операционный усилитель Современные разработчики электронной аппаратуры стремятся использовать готовые функциональные узлы в виде интегральных микросхем (ИМС). Схемные решения ИМС тщательно проработаны и обеспечивают высокое качество аппаратуры. Предприятия, выпускающие микросхемы, заинтересованы в их сбыте. Поэтому они стремятся разработать универсальные микросхемы, которые можно применять в качестве различных функциональных узлов. Это повышает их спрос. Одной из таких ИМС является операционный усилитель (ОУ).

Импульсные устройства Кроме напряжения синусоидальной формы в практике электротехники и электроники применяются напряжения других форм. Наиболее широко применяется импульсное напряжение. Импульсным называется прерывистое во времени напряжение (сигнал) любой формы. Под формой сигнала понимается закон изменения во времени напряжения или тока.

Компаратор – это устройство сравнения двух напряжений. Такие возможности приобретают ОУ в нелинейном режиме работы. Для анализа процесса сравнения обратимся еще раз к передаточной характеристике ОУ

Генераторы импульсных сигналов Формирующие цепи При генерации импульсных сигналов различной формы необходимо формирование временных интервалов, задающих длительность импульсов и пауз, частоту повторения импульсов и т.п. Эта задача решается с помощью формирующих цепей содержащих реактивные элементы. Наиболее простыми и надежными являются RC-цепи. Как правило, они применяются в качестве разделительных, дифференцирующих или интегрирующих цепей.

  Мультивибратором называется генератор периодически повторяющихся прямоугольных импульсов. Мультивибратор может быть выполнен на транзисторах, ОУ или на логических элементах. Рассмотрим схему мультивибратора на ОУ

  Генераторы линейно изменяющегося напряжения (ГЛИН) формируют напряжение пилообразной формы, которое необходимо для создания разверток на экранах осциллографов, телевизоров и др. индикаторов, для преобразователей аналоговых величин в цифровые, преобразователей амплитуда-время и для др. целей.



Примеры выполнения курсовой работы по электротехнике