Контур детали с элементами сопряжения Геометрические построения Построение сопряжения двух дуг Выполнение чертежей деталей Последовательность нанесения размеров Проецирующие плоскости


Черчение, начертательная геометрия

Позиционные задачи на пересечение прямых и плоскостей

При моделировании важно знать взаимное положение геометрических фигур, которые могут пересекаться (что, часто, не должно быть), касаться и т.д. Ортогональный чертеж не всегда дает ответ на эти вопросы. Однако знания свойств параллельного проецирования, позволяет сразу решить некоторые позиционные задачи. Так, например, свойство параллельности прямой плоскости (прямая параллельна плоскости, если она параллельно какой-либо прямой, лежащей в плоскости) позволяет по ортогональным (например рис 4.1,а,б) проекциям заключить, что прямая параллельна плоскости, т.е. не пересекает ее и не лежит в ней. Алгоритм не принадлежности прямой плоскости (прямая принадлежит плоскости, если две ее точки лежат в плоскости) дан на рис. 4.1, б, где видим, что прямая в плоскости 1-2 на проекции V совпадает (конкурирует с заданной прямой), а на другой нет.

Рис. 4.1. а) прямая l параллельна плоскости б) прямая l также параллельна плоскости. Вычисление ординат эпюры изгибающих моментов. Для определения численных значений усилия M в каждом контролируемом сечении применяется метод сечений, основанный на расчленении расчетной схемы до или после контролируемого сечения на две части.

Решение многих позиционных задач прослеживается непосредственно по чертежу, если грань (плоскость) или ребро (прямая) занимают частные положения. Поэтому частные положения важно не только знать, но и важно "видеть" в них решение задач, тем более, как будет показано дальше, начертательная геометрия и автоматизированные системы для этих и многих других целей имеют мощный инструмент преобразований (см. темы 7,8) фигур к их частному виду.

Частные случаи пересечения прямой с плоскостью

Пересечение проецирующей прямой с плоскостью (рис. 4.2,а) определяется из условия принадлежности точки пересечения заданной плоскости (см. тему 3).
Пересечение прямой с проецирующей плоскостью (рис. 4.2,а) определяется в пересечении вырожденной проекции плоскости и соответствующей проекции прямой.

На рис. 4.2,б задана фронтально проецирующая плоскость, пересечение вырожденной проекция которой с проекций прямой l'' на эту же плоскость определяет точку пересечения. Как видим, решение позиционных задач при таком расположении простые.


Рис. 4.2. а) пересечение проецирующей прямой с плоскостью,
б) пересечение прямой с проецирующей плоскостью, в)

Позиционные задачи на взаимопринадлежность Упражнение. В горизонтально-проецирующей плоскости, заданной ее вырожденной проекцией провести все три линии уровня.

Задачи, в которых определяется взаимное положение фигур относительно друг друга, называются позиционными. К ним относятся задачи на взаимопринадлежность (задать точку на линии или плоскости, провести прямую в плоскости и т.п.) и задачи на пересечение (найти точку пересечения прямой с плоскостью, линию пересечения двух плоскостей. Кроме перечисленных задач при компьютерном моделировании геометрических форм возникают и новые задачи из теории множеств типа найти пересечения (форму) двух и более объектов, разность, объединение.

Взаимное положение двух прямых

Частные случаи пересечения плоскостей


Метод секущих плоскостей