Закон сохранения импульса Кинетическая и потенциальная энергии Кинетическая энергия вращения Законы сохранения в механике Затухающие колебания


Физика курс лекций и лабораторных работ

Кинетическая энергия вращения

Рассмотрим абсолютно твердое тело (абсолютно твердое тело – тело, которое ни при каких условиях не может деформироваться и при всех условиях расстояние между двумя точками (или вернее между двумя частицами) этого тела остается постоянным.), вращающееся около неподвижной оси, проходящей через него. Мысленно разобьем это тело на маленькие объемы с элементарными массами m1, m2,…, mn, находящиеся на расстоянии r1, r2, …, rn от оси.

При вращении твердого тела относительно неподвижной оси отдельные его элементарные объемы массами mi опишут окружности различных радиусов ri и имеют различные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:

Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его элементарных объемов:

или

Используя выражение >, получаем

,

Таким образом, кинетическая энергия вращающегося тела

Если сравнить формулы >  и  для кинетической энергии тела движущегося поступательно, следует, что момент инерции – мера инертности тела при вращательном движении. Выведенная формула  справедлива для тела, вращающегося вокруг неподвижной оси.

В случае плоского движения тела, например, цилиндра скатывающегося с наклонной плоскости без скольжения, или движение маятника Максвелла (лабораторная работа 109), энергия складывается из энергии поступательного и вращения:

,

где m - масса катящегося тела;

vC – скорость центра масс тела;

JC – момент инерции тела относительно оси, проходящей через центр его масс;

ω – угловая скорость тела.

Момент силы

Моментом силы относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора  , проведенного из точки О в точку А приложения силы, на силу :

Здесь > - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от  к .

Модуль момента силы

где α – угол между >  и ;

- кратчайшее расстояние между линией действия силы и точкой О – плечо силы.

Найдем выражение для работы при вращении тела. Пусть сила  приложена в точке В, находящейся от оси z на расстоянии r, α – угол между направлением силы и радиусом-вектором . Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол dφ точка приложения В проходит путь   и работа равна произведению проекции силы на направление смещения на величину смещения:

Учитывая >, можем записать

,

где > - момент силы относительно неподвижной оси. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идет на увеличении его кинетической энергии: >, но , поэтому , или .

Учитывая, что >, получаем

.

Это уравнение представляет собой динамики вращательного движения твердого тела относительно неподвижной оси.

Второй закон Ньютона справедлив только в инерциальных системах отсчета. В механике большое значение имеет принцип независимости действия сил: если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других не было.

Момент импульса и закон его сохранения При сравнении законов вращательного и поступательного движений просматривается аналогия между ними, только во вращательном движении вместо силы «выступает» ее момент, роль массы «играет» момент инерции.

ИЗУЧЕНИЕ ЗАКОНОВ ДИНАМИКИ И КИНЕМАТИКИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА

Цель работы: проверка второго закона Ньютона и уравнений равноускоренного прямолинейного движения.

Интерференция и дифракция волн Принцип суперпозиции для волн. Когерентность и монохроматичность волн. Время и длина когерентности. Расчет интерференционной картины от двух точечных когерентных источников. Оптическая длина пути. Принцип Ферма. Разность хода. Условия интерференционных максимумов и минимумов. Интерференция света в тонких пленках. Кольца Ньютона. Интерферометры.
Физика курс лекций и лабораторных работ